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Abstract: Estimating properties of the distribution of the peak of a stochastic process from a single finite realization is a problem that arises in a
variety of science and engineering applications. Furthermore, it is often the case that the realization is of length T whereas the distribution of the
peak is sought for a different length of time, T1 > T. The procedure proposed here is based on a peaks-over-threshold extreme value model,
which has an advantage over classical models used in epochal procedures because it often results in an increased size of the relevant extreme
value data set. For further comparison, the translation approach depends upon the estimate of the marginal distribution of a non-Gaussian time
series, which is typically difficult to perform reliably. The proposed procedure is based on a two-dimensional Poisson process model for the
pressure coefficients y, above the threshold B. The estimated distribution of the peak value depends upon the choice of the threshold. The
threshold choice is automated by selecting the threshold that minimizes a metric that captures the trade-off between bias and variance in
estimation. Two versions of the proposed new procedure are developed. One version, denoted FpotMax, includes estimation of a tail length
parameter with a similar interpretation of the generalized extreme value distribution tail length parameter. The second version, denoted
GpotMax, assumes that the tail length parameter vanishes. DOI: 10.1061/AJRUA6.0000933. © 2017 American Society of Civil Engineers.
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Introduction

Estimating properties of the distribution of the peak of a stochastic
process from a single finite realization is a problem that arises in a
variety of science and engineering applications. Furthermore, it
is often the case that the realization is of length T whereas the
distribution of the peak is sought for a different length of time,
T1 > T. An example of interest in structural engineering, which
is the focus of this paper, is the time history of pressure coefficients
measured on a model in an aerodynamics laboratory.

Cook and Mayne (1979, 1980) proposed a simple procedure in
which the time history of the pressure coefficients of length T is
divided into n equal segments. A sample is created consisting of
the peaks of each of those segments, and a Gumbel cumulative dis-
tribution function (CDF) is fitted to that sample. To obtain the larg-
est peak for a time history of length T1 ¼ rT=n ðr ≥ nÞ, that CDF
is raised to the rth power, resulting in a second Gumbel distribution
describing the peak of a series of length T1. This procedure is
commonly implemented using the best linear unbiased estimate
(BLUE) (Lieblein 1974) for the parameters of the Gumbel distri-
bution. This method is henceforth referred to as the epochal
method.

Several other methods have been proposed for this problem. For
the particular case in which the marginal distribution of the process
is Gaussian, closed-form expressions for the mean and standard
deviation of the distribution of the peak are available (Rice 1954;
Davenport 1964). If the distribution is not Gaussian, Sadek and
Simiu (2002) developed a nonlinear mapping procedure, some-
times referred to in the literature as translation, by which those
statistics can be obtained. The translation method depends
heavily on the engineer’s ability to choose an appropriate mar-
ginal probability distribution. In practice, because of the diffi-
culty of this task, the performance of the translation method can
be unsatisfactory.

Another general approach for winds is the so-called method
of independent storms described and improved upon over several
papers, e.g., Cook (1982), Peterka (1983), Harris (1999), and
Harris (2009). This approach argues for finding and using in es-
timation, the single largest value in each available independent
storm. The approach does not leverage asymptotically justifiable
models such as the generalized extreme value distribution, the
generalized Pareto distribution, or the two-dimensional Poisson
process model that provides the bedrock of the proposed method.
In fact, Harris (2009) argues against the applicability of methods
based on models derived from asymptotic theory. However,
although in practice infinite sample sizes are never achieved, these
models, especially the two-dimensional Poisson process model in
this paper, remain popular and seemingly useful, see Smith (1989),
Smith (2004), Coles (2004), and Mannshardt-Shamseldin et al.
(2010) for example.

This paper (1) describes a procedure for estimating the distribu-
tion of the peak based on a peaks-over-threshold (POT) model
for extreme values; and (2) assesses its performance through cross-
validation. The authors do not claim to undertake a detailed
comparison of their method with all other alternatives. Two major
contributions of this procedure to the existing literature are (1) es-
timation of the distribution of the peak values using a POT model
for which there is no analytical solution because the number of

1Research Structural Engineer, Engineering Laboratory, National Insti-
tute of Standards and Technology, Gaithersburg, MD 20899 (corresponding
author). E-mail: dduthinh@nist.gov

2Mathematical Statistician, Statistical Engineering Division, National
Institute of Standards and Technology, Gaithersburg, MD 20899. E-mail:
adam.pintar@nist.gov

3NIST Fellow, Engineering Laboratory, National Institute of Standards
and Technology, Gaithersburg, MD 20899. E-mail: simiu@nist.gov

Note. This manuscript was submitted on April 18, 2016; approved on
May 26, 2017; published online on September 11, 2017. Discussion per-
iod open until February 11, 2018; separate discussions must be submitted
for individual papers. This paper is part of the ASCE-ASME Journal of
Risk and Uncertainty in Engineering Systems, Part A: Civil Engi-
neering, © ASCE, ISSN 2376-7642.

© ASCE 04017028-1 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 2017, 3(4): 04017028 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

JO
H

N
S 

H
O

PK
IN

S 
U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
2/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/AJRUA6.0000933
mailto:dduthinh@nist.gov
mailto:adam.pintar@nist.gov
mailto:simiu@nist.gov


threshold crossings is itself a random quantity, and (2) a rigorous
approach to quantifying uncertainty for the entire estimated distri-
bution of the peak, not just, for example, the mean of that
distribution. To carry out the calculations associated with this ap-
proach, software that leverages the R environment for statistical
computing and graphics is available at Pintar (2016). Instructions
for installation and use are available there as well.

Peak Estimation by a Peaks-over-Threshold Model

Peaks-over-threshold models are applied to observations, y, that
exceed a specified threshold, B, of the time series being considered.
All peaks over a high threshold are used, instead of epochal peaks
for epochs of fixed size, because this choice will generally allow
the use of more observations from the original time series to infer
the values of the model parameters, potentially leading to less
uncertainty.

Although the results of the POT approach depend upon the
choice of threshold, a procedure for objectively selecting an appro-
priate threshold using the data themselves eliminates the depend-
ence of the final result on an arbitrary choice. The threshold
selection procedure is summarized subsequently and described
fully by Pintar et al. (2015).

The complete procedure is described and illustrated in what fol-
lows with reference to data set jp1 in the NIST–University of
Western Ontario (UWO) Aerodynamic Database for Rigid Build-
ings (NIST 2004; Ho et al. 2005), Building 7, in open terrain. The
building was modeled at a scale of 1∶100, tested for wind directions
ranging from 0° to 90° and from 270° to 360° every 5°, and data
were collected for 100 s at 500 Hz. Because of building symmetry,
for terrain with the same exposure in all directions, only half of all
possible wind directions need to be investigated. In Fig. 1, 0° and
90° are in the þy and the þx directions, respectively. Normalized
pressure coefficients (Fig. 2) from Tap 1715, in the middle of the
roof edge, were investigated for wind direction 270°. The procedure
is described in the following subsections.

Step 1: Reverse Signs the Time Series If Necessary

The procedure is developed for maxima. Because the peaks of
interest in Fig. 2 are minima, the signs of this time series were
reversed. If analysts are interested in both peaks and valleys, they
should apply the method twice, first with the original signs and a
second time with reversed signs.

Step 2: Choose a Model

The POTmodel leveraged in this work is a two-dimensional Poisson
processes defined by the intensity function λ in either Eq. (1) or
Eq. (2). Note that Eq. (2) is derived by taking the limit of Eq. (1)
as kðtÞ approaches zero. The appropriateness of such models for
crossings of a high threshold, B, was first discussed by Pickands
(1971), and the form of Eq. (1) is given, for example, in
Eq. (1.19) of Smith (2004)

λðt; yÞ ¼ 1

σðtÞ
�
1þ ½y − μðtÞ�

σðtÞ
�−1−1=kðtÞ
þ

ð1Þ

λðt; yÞ ¼ 1

σðtÞ exp
�−½y − μðtÞ�

σðtÞ
�

ð2Þ

Note that the threshold, B, does not appear in either Eq. (1) or
Eq. (2). It instead specifies the domain on which the Poisson process
is defined. Specifically, if data are collected over the time interval
½t1; t2�, the domain of the Poisson process is ½t1; t2� × ½B;∞Þ. It is
possible to allow the threshold to vary with time t, which is indeed
the case in Pintar et al. (2015), but the dependence on t is sup-
pressed here to be able to describe the domain more succinctly.
General Poisson processes are described in many texts, for example,
Chapter 4 of Resnick (1992). Briefly, for the two-dimensional case,
if D is some two-dimensional region, the number of observations
found in D follows a Poisson distribution with mean equal to the
volume trapped by the intensity function overD. Furthermore, ifD1

and D2 are disjoint regions, the numbers of observations falling in
D1 andD2 are independent of each other. Theþ subscript in Eq. (1)
means that negative values inside the square brackets are raised to
zero. Of particular interest, and the focus of the wind tunnel exam-
ples in this paper, is the case when the parameters are constant,
i.e., μðtÞ ¼ μ, σðtÞ ¼ σ, and kðtÞ ¼ k, although Pintar et al.
(2015) consider time-varying parameters to capture the behavior
of a mixed wind climate outdoors. The parameters μ and σ are
the location and scale parameters, respectively. Eq. (2) is the limit
of Eq. (1) as the tail length parameter k approaches zero, just as the
Gumbel distribution is the limit of the generalized extreme value
distribution as the tail length parameter limits to zero. For this rea-
son, the complete approach based on the Poisson process defined
by the intensity function in Eq. (2) is henceforth designated as

Fig. 1. Building 7, data set jp1 (NIST–UWO database); dimensions in
feet (1 ft ¼ 0.3048 m); roof slope 1∶12 Fig. 2. Pressure coefficients from Tap 1715 for wind in −x direction
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GpotMax, whereas the Poisson process with λðt; yÞ defined in
Eq. (1) is designated as the full model, or FpotMax.

Step 3: Decluster

Fig. 3 depicts the same raw time series as Fig. 2 [Fig. 3(a) reverses
the signs of Fig. 2], and two thresholded variants with the thresh-
olds B ¼ 1.8 [Fig. 3(b)] and B ¼ 2.0 [Fig. 3(c)]. Note in Fig. 3 that

successive peaks can be separated by time intervals smaller than the
time between an up-crossing of the mean and the subsequent down-
crossing of the mean. Such successive peaks are typically strongly
correlated, as shown by Fig. 4, which plots the values of the history
in Fig. 3(a) on the horizontal axis and their immediately adjacent
neighbors on the vertical axis. Poisson processes are not appropri-
ate for histories in which immediately adjacent neighbors are
highly correlated because of the independence assumption that
underlies them.

Clusters are data blocks within time intervals defined by an up-
crossing of the mean and the subsequent down-crossing of the
mean. All but the cluster maximums are discarded. Fig. 5 displays
the counterparts of Fig. 3 after declustering, and Fig. 6 depicts the
counterpart of Fig. 4. Fig. 6 shows that declustering is indeed very
effective. The approach to creating clusters was chosen for its con-
venience and because it has proved effective in removing the cor-
relation between adjacent observations. If in a particular example a
different approach that is natural or physically meaningful is avail-
able, it should be used instead. Declustering is intended only to al-
low adjacent observations to be assumed statistically independent.

Note that similar declustering procedures have been used in past
work on extremes. For example, the declustering procedure used
here is similar to that employed by Smith (1989) for ozone
extremes. Furthermore, the approach to identifying the “lulls” of
Cook (1982) also bears resemblance. A distinction between the
approach used here and that of Cook (1982) is Cook’s absolute
velocity of 5 m=s that identifies the start of a lull. It is presumed
that the choice of 5 m=s is physically meaningful, whereas the cor-
responding choice in this paper of the mean of the history under
study is convenient yet sensible, and has proven to work well in
practice as demonstrated in Figs. 4 and 6.

Fig. 3. (a) Raw time series; (b) observations above 1.8; (c) observations above 2.0

Fig. 4. Scatter plot of adjacent pressure coefficients from Fig. 3(a)
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Step 4: Select Optimal Threshold

Historically, a hurdle to the use of the POT models has been the
appropriate choice of a threshold. Because the threshold dictates
the data that are included in (or omitted from) the sample used
to fit the model, its impact on the results can be large. The model
becomes more appropriate as the threshold increases, but the

threshold cannot be too high because too few observations will
remain for fitting the model since observations are taken over only
a finite period of time. Any approach to choosing a threshold must
balance these competing aspects. A common and easy to
implement—although not necessarily optimal—approach is to pick
a high quantile of the series, e.g., 95% (Mannshardt-Shamseldin
et al. 2010, p. 489). This paper takes the approach of Pintar et al.
(2015). An optimal threshold based on the fit of the model to the
data, as judged by the W statistics defined in Eq. (1.30) of Smith
(2004), is used

W ¼ 1

kðtÞ log
�
1þ kðtÞy

σðtÞ þ kðtÞ½BðtÞ − μðtÞ�
�

ð3Þ

The limit of Eq. (3) as kðtÞ approaches zero is

W ¼ y
σðtÞ ð4Þ

Selection of the threshold begins by specifying a sequence of
thresholds to examine. The sequence is defined by the minimum
and maximum number of observations to be used in estimation.
As a minimum number of observations, 10 and 15 have been found
to work reasonably well for Eqs. (2) and (1), respectively, providing
five observations per parameter. The maximum number of obser-
vations chosen should be sufficiently high so that it will exceed the
number of observations corresponding to the optimal threshold and
yet still be feasible from a computational perspective. For each
threshold in the sequence, the model parameters are estimated
by maximum likelihood, which is discussed next in Step 5. The
W statistics are then calculated by plugging the estimated

Fig. 5. (a) Declustered time series; (b) resulting observations above 1.8; (c) above 2.0

Fig. 6. Scatter plot of adjacent pressure coefficients from Fig. 5(a)
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parameters into either Eq. (3) or Eq. (4), and they are then plotted
against the quantiles of the standard exponential distribution,
which is the probability distribution of W if the data are perfectly
described by the Poisson process model being used. For a perfect
fit, the points would fall exactly on the diagonal line. Each plot,
one for each threshold in the sequence of thresholds, is summarized
by the maximum vertical distance from a point to the 45° line.
The threshold that minimizes that distance is selected. This ap-
proach to selecting a threshold is also comparable to that used by

Pickands (1994). Figs. 7 and 8 show plots of the ordered W sta-
tistics versus exponential quantiles for the zero-tail (GpotMax)
and full (FpotMax) models, respectively, using the optimal thresh-
olds for the declustered series in Fig. 5(a).

Step 5: Estimate Model Parameters

As previously mentioned, it was necessary to estimate the model
parameters, η ¼ ðμ; σ; kÞ for the intensity function in Eq. (1) and
η ¼ ðμ;σÞ for the intensity function in Eq. (2), for each threshold in
a sequence of thresholds when choosing the optimal threshold.
Thus, even though parameter estimation is discussed as a separate
Step 5, it is a major part of Step 4. Parameter estimation proceeds
by maximum likelihood (Casella and Berger 2002, Section 7.2.2).
For the intensity function given in Eq. (1), the natural logarithm of
the likelihood function (which is often optimized in lieu of the like-
lihood function for numerical stability) when μðtÞ ¼ μ, σðtÞ ¼ σ,
kðtÞ ¼ k, and BðtÞ ¼ B is

lðμ; σ; kÞ ¼
�−1

k
− 1

��Xn
i¼1

ln

�
1þ kðyi − μÞ

σ

��
− n lnðαÞ

− T

�
1þ kðB − μÞ

σ

�−1=k
ð5Þ

where n = number of declustered observations that cross the chosen
threshold, B. For the intensity function given in Eq. (2), the natural
logarithm of the likelihood function is

lðμ;σÞ ¼ −n lnðσÞ −
P

n
i¼1 yi
σ

þ nμ
σ

− T exp

�−ðB − μÞ
σ

�
ð6Þ

When selecting the optimal threshold, it is necessary only to
estimate the parameters for each potential threshold. However,
to later quantify uncertainty, the Hessian matrix of the natural log-
arithm of the likelihood function at its maximum is needed. This is
the primary reason for listing parameter estimation as a separate
Step 5. To save on computation in Step 4, calculation of the Hessian
matrix is omitted. After the optimal threshold is chosen, the
Hessian matrix of the natural logarithm of the likelihood function
at its maximum is calculated only for the selected threshold. Note
that it is necessary to maximize the functions, and thus calculate the
Hessian matrix at the maximum for Eqs. (5) and (6) numerically.

Step 6: Empirically Build Distribution of Peak by Monte
Carlo Simulation

A series of desired length is generated from the fitted nonhomo-
geneous two-dimensional Poisson process model, and the peak
of the generated series is recorded. Simulating a nonhomogeneous
two-dimensional Poisson process may be accomplished using
Algorithm 9 of Pasupathy (2011), for example. Simulation from
the estimated model and subsequent recording of the peak value
is repeated nmc times. The recorded peaks form an empirical
approximation to the distribution of the peak. A histogram of
the simulated peaks over 100 s with nmc ¼ 1,000 for the example
data set is shown in Fig. 9, in which the mean value is marked by
the triangle, and is the reported final result.

Step 7: Quantify Uncertainty

Recall that the goal is to estimate the distribution of the peak of the
time series under study. Thus the uncertainty in the estimate of
the entire distribution of the peak is being quantified, not only, for
example, the uncertainty in the mean of that distribution. To accom-
plish this, a second layer of Monte Carlo sampling is included.

Fig. 7. Plot of the W statistics for the zero-tail model (GpotMax)
versus their corresponding standard exponential quantiles for the
declustered series depicted in Fig. 5(a) using the optimal threshold
(threshold ¼ 2.10, 45 data points)

Fig. 8. Plot of theW statistics for the full model (FpotMax) versus their
corresponding standard exponential quantiles for the declustered series
depicted in Fig. 5(a) using the optimal threshold (threshold ¼ 2.16, 37
data points)
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The input to Step 6 is the maximum likelihood estimate of η, η̂.
However, because only a finite sample is available, these estimates
are uncertain. That uncertainty may be described using the multi-
variate Gaussian distribution and the Hessian matrix calculated in
Step 5. More specifically, values of η that are also consistent with
the observed time series are sampled, and Step 6 is repeated nboot
times for those new parameter values. The mean of the multivari-
ate Gaussian distribution is equal to the estimated parameters, η̂,
and the covariance matrix is equal to the negative inverse Hessian
matrix of the natural logarithm of the likelihood evaluated at its
maximum. The result of Step 7 is nboot empirical approximations
to the distribution of the peak. Fig. 10 shows nboot ¼ 50 replicates
of the distribution of the peak for the example data set. Only 50
replicates are shown in Fig. 10 for clarity. Typically, more repli-
cates, perhaps 1,000, would be desired. The bar shown in Fig. 10
depicts an 80% confidence interval for the mean, which was
calculated from 1,000 replicates. This technique approximates a
bootstrap algorithm (Efron and Tibshirani 1994) because the
bootstrap distribution of the estimated parameter values is not con-
structed by resampling the data, but assumed to be a multivariate
Gaussian distribution.

Results for Tap 1715

Fig. 11 shows several results for the example series. The applica-
tion of GpotMax to the whole 100 s series is depicted by the
dashed line, and it is close to the observed peak, shown by the
solid line. On the same plot, the squares show the results of
six analyses performed on six partitions of the same time series,
each of length 100=6 s. The GpotMax estimates closely track the
observed peaks (circles) for each of the partitions. For each par-
tition of length 100=6 s, GpotMax may also be used to calculate
the mean of the distribution of the peak for a 100-s duration,
shown by the triangles in Fig. 11. The six individual partitions
can yield estimates that differ by as much as approximately

25% from the estimate based on the entire 100-s time series. How-
ever, the average of these six estimates, shown by the dotted line,
is reasonably close to the estimate based on the whole series and
the observed 100-s peak.

When FpotMax is applied to the full 100-s series, the estimated
mean of the distribution of the peak is 3.17 with a standard error of
0.33. In comparison, for GpotMax, the estimated mean is 3.25 with
a standard error of 0.17. That the estimate for FpotMax is smaller
than that for GpotMax reflects the slightly negative estimate
(−0.02) of the tail length parameter, k. The larger standard error
for the FpotMax estimate (almost double in this example) is ex-
pected because the number of parameters being estimated increased
from two to three. More complex models generally lead to less-
certain estimates when the same data are used for estimation.

Fig. 9. Histogram of the estimated distribution of the peak value start-
ing with the time series depicted in Fig. 5(a); the triangle shows the
mean of the distribution

Fig. 10. Bootstrap replicates of the distribution of the peak starting
with the series shown in Fig. 5(a); the short horizontal line shows
an 80% confidence interval (CI) for the mean of the distribution of
the peak value

Fig. 11. Comparison of estimates based on six equal data blocks and
on global analysis, using GpotMax
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Cross-Validation

To show that this approach works well in practice, it is not enough
to show that it works well on the same data that were used to es-
timate the model parameters, as was the case for the results of
Fig. 11. A good measure of a statistical method’s ability is out-
of-sample predictive accuracy. A common technique for estimating
out-of-sample predictive accuracy is cross-validation. That is, the
available data are partitioned into training and validation sets,
the model parameters are estimated using the training set, and the
trained model is then used to predict some property of the valida-
tion set. This exercise leveraged the series from five different taps,
listed on the horizontal axis of Fig. 12. These five taps were chosen
because they are representative of large pressure fluctuations,
which commonly occur at roof corners and edges for negative pres-
sures and at the middle of walls for positive pressures. A control
with smaller pressure fluctuations (at the middle of the roof) also
was included. Each series was partitioned into two pieces, one of
33 s and the other of 67 s. The shorter piece was used to estimate the
model parameters and predict the overall peak of the longer piece.

Fig. 12 shows the results. The solid square depicts the observed
peak from the 67-s partition; the open square shows the prediction
of GpotMax for the 67-s piece, but trained on the 33-s piece; and
the open circle illustrates the same results for FpotMax. The vertical
dashed and dotted lines show 80% prediction intervals. These in-
tervals are distinct from the confidence interval shown in Fig. 10.
The difference between confidence intervals and prediction inter-
vals is the difference between estimating a property of a population,
such as the mean of the distribution of the peak value, and predict-
ing a single outcome from a stochastic process, such as predicting
the peak value from one new 67-s series.

The predictions from GpotMax and FpotMax shown in Fig. 12
are generally close to each other and to the observed peak. The
largest discrepancy occurred for Tap 813, which is expected be-
cause of the larger pressure fluctuations at the roof corners com-
pared with other locations. More importantly, Fig. 12 shows that
the prediction intervals maintained their stated 80% coverage. It
was expected that zero or one (of five) of the observed peaks would
fall outside the prediction intervals. None of the observations fall
outside the GpotMax bounds, and only one falls outside the Fpot-
Max bounds, Tap 2011. This cross-validation exercise shows that
the proposed approach performs well in practice.

Conclusions

This paper presents a method for estimating the distribution of the
peak value of a time history of some length of interest, T1, from an
observed time history of length T, usually with T < T1. The basis of
the approach is a POT model, a two-dimensional Poisson process,
first described by Pickands (1971). A reason for choosing a POT
extreme value model is that it typically admits more data for esti-
mation than do classic extreme value models used in more tradi-
tional epochal procedures. The approach proceeds by a series of
seven steps: (1) ensure focus is on the distribution of a maximum;
(2) choose whether to estimate the tail length parameter from the
observed history or to set it to zero a priori; (3) decluster the ob-
servations to eliminate correlation between observations that are
adjacent in time; (4) select an optimal threshold by balancing
the tradeoff between variance and bias in estimation; (5) using
the chosen threshold, estimate the model parameters by maximum
likelihood, and calculate the Hessian matrix of the natural loga-
rithm of the likelihood function at the maximum to be used sub-
sequently in uncertainty quantification; (6) empirically construct
the distribution of the peak by simulating many histories of length
T1 from the fitted model and saving the peak value of each simu-
lated history; and (7) quantify uncertainty in the distribution of the
peak by perturbing the parameter estimates according to the
Hessian matrix calculated in Step 5 and the multivariate Gaussian
distribution, and repeating Step 6 many times.

A major contribution of this paper to the existing body of liter-
ature is the estimation of the distribution of the peak value using a
POT extreme value model. Epochal procedures obtain a closed
form for the distribution of the peak value by leveraging classical
extreme value models and order statistics. Such a closed form is not
available for the two-dimensional Poisson process model employed
here. This is because the number of threshold crossings is itself a
random quantity. This difficulty is circumvented by using simula-
tion to empirically construct the distribution of the peak value.

To illustrate the practical ability of this method, a cross-
validation exercise was undertaken with histories from five exam-
ple taps. These taps were selected from the available population of
taps because they capture the largest fluctuations in wind pressure.
The cross-validation exercise showed that the out-of-sample predic-
tive accuracy of the method is quite good. Furthermore, and per-
haps more importantly, it showed that the prediction intervals
calculated according to the approximate bootstrap algorithm main-
tained their nominal coverage. This provides confidence that the
statements of uncertainty are not gross overassessments or under-
assessments. The rigorous approach to quantifying uncertainty for
the whole distribution of the peak is another major contribution of
this paper to the current body of literature.

Finally, because the requisite computations for this approach are
larger than for many currently popular procedures, fast and efficient
software to accompany this paper has been developed and released
as an R package. It is available at Pintar (2016) along with instal-
lation and use instructions.

Appendix. Tap Locations, Wind Directions, and
Pressure Time Histories for Taps 1712, 2011, 708,
and 813

Figs. 13–16 show the location of pressure taps 1712, 2011, 708,
and 813, together with the wind direction and the time series used
in this analysis.

Fig. 12. Observed peaks and estimates by GpotMax and FpotMax of
mean peaks and the 80% confidence intervals
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Fig. 13. (a) Location of Tap 1712; (b) time series of pressure for Tap 1712, wind 270° (−x), min ¼ −3.7855

Fig. 14. (a) Location of Tap 2011; (b) time series of pressure for Tap 2011, wind 270° (−x), max ¼ 2.4812

Fig. 15. (a) Location of Tap 708; (b) time series of pressure for Tap 708, wind 0° (þy), min ¼ −3.2387
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